Figure 1
The relationship between the number of people killed (top panel), the number of people affected (middle panel) and the damage done (bottom panel) by natural disasters between 1990 and 2000 and per capita income in 1995.

Number of Natural Disasters and Per Capita Income

\[y = 0.0489x + 0.3669 \]

\[R^2 = 0.0007 \]

Vulnerability to Natural Disasters and Per Capita Income

\[y = -1.0196x + 4.7624 \]

\[R^2 = 0.2105 \]
Vulnerability to Natural Disasters and Per Capita Income

\[y = 0.1443x - 3.4473 \]

\[R^2 = 0.005 \]
Figure 2
The relationship between the number of natural disasters between 1990 and 2000 and per capita income in 1995. In the top panel, the number of natural disasters is normalized with population; in the bottom panel, the number of natural disasters is normalized with the size of the country.

\[
y = -0.0416x + 0.7679 \\
R^2 = 0.0011
\]

\[
y = 0.0489x + 0.3669 \\
R^2 = 0.0007
\]
Figure 3
Annual flows of the Nile River into Lake Nassar contrasted against hypothetical impacts thresholds. Panel a depicts the historical time series from 1910 through 1960. Panel b adds a climate induced trend to that series; and panel c reflects a climate induced increase in inter-annual variability.
Annual River Flow (milliards)

Panel c
Figure 4
The effect on the upper threshold of building levies over a five year period beginning in the fifth year.
Figure 5
The smoothing effect on inter-annual variability of building an upstream dam.
Figure 6
The effect on the upper threshold of periodic dredging of the river bed.